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Reactive oxygen species (ROS) are highly reactive
reduced oxygen molecules. Recent studies have shown
that production of ROS occurs in response to many
physiological stimuli in plant cells, including pathogen
attack, hormone signaling, polar growth, and gravi-
tropism. Evidence is emerging that ROS can function
as cellular second messengers that are likely to mod-
ulate many different proteins leading to a variety of
responses. One target of ROS signal transduction is
the activation of Ca21-permeable channels in plant
membranes. ROS activation of Ca21 channels may
be a central step in many ROS-mediated processes,
such as stress and hormone signaling, polar growth,
development, and possibly during mechanotrans-
duction.

MANY STIMULI INDUCE REACTIVE OXYGEN
SPECIES IN PLANT CELLS

Apart from the well-recognized salicylic acid- and
pathogen-induced ROS production (Chen et al., 1993;
Lamb and Dixon, 1997; Torres et al., 2002), in recent
years many additional stimuli have been shown to
induce ROS production in plants. These include ab-
scisic acid (ABA; Pei et al., 2000; Zhang et al., 2001),
auxin (Joo et al., 2001; Schopfer et al., 2002), GAs (Fath
et al., 2001), gravity (Joo et al., 2001), UV-B light
(Mackerness et al., 2001), Nod factors (D’Haeze et al.,
2003), and phytotoxins (Bais et al., 2003). How do ROS
modify downstream targets? Many protein targets
of ROS may exist, which could produce specific re-
sponses via ROS modification of proteins. ROS can
modify protein structure and activity by causing the
formation of disulfide bonds or sulfenic acid groups
(Delaunay et al., 2002; Salmeen et al., 2003; van
Montfort et al., 2003). We review here that one impor-

tant ROS-signaling component is emerging in sev-
eral plant signal transduction pathways, namely the
activation of Ca21-permeable cation channels.

REACTIVE OXYGEN SPECIES, A PRIMER

ROS is the term used to describe the products of the
sequential reduction of oxygen (O2): one-electron re-
duction of O2 forms the superoxide anion (�O2

2) and
hydroperoxyl radical (�HO2; Fig. 1). A second one-
electron reduction forms hydrogen peroxide (H2O2),
and a third one-electron reduction produces the hy-
droxyl radical (�OH; Fig. 1). Water is formed when �OH
is further reduced (Fig. 1). The hydroperoxyl radical
(�HO2) has a pKa value of 4.8 (Bielski et al., 1985), thus
�HO2 and its deprotonated form, �O2

2, can both occur at
slightly acidic pH, as found in cell walls. Unlike �HO2,
H2O2 and �OH have high pKa values (11.6 and 11.9,
respectively; Buxton et al., 1988); thus, the deproto-
nated forms of these compounds, HO2

2 and �O2, are
usually negligible under physiological conditions.

Superoxide anion radicals (�O2
2) form H2O2 and O2

spontaneously by a process termed dismutation or
disproportionation. The rate of this reaction is rapid.
The half-life of �O2

2 ranges from approximately 0.2 ms
to 20 ms, assuming a concentration range of 10 mM to
1 mM �O2

2 (second order rate constant 5.4 3 106
M

21

s21 at pH 6, calculated after Bielski et al., 1985). How-
ever, the enzyme superoxide dismutase further accel-
erates this reaction by approximately 400-fold (rate
constant is 2.4 3 109

M
21 s21; Scandalios, 1997; Fig. 1).

Thus, the typical life time of the superoxide anion is
less than 1 ms.

H2O2 is a more stable ROS and can diffuse across
membranes through water channels (Henzler and
Steudle, 2000) and cause oxidative protein modifica-
tions at distal areas from its production (Scandalios
et al., 1997). H2O2 forms �OH in the presence of transi-
tion metals such as iron and copper (Fenton reaction;
Halliwell and Gutteridge, 1999; Fig. 1).

The reactivity of the hydroxyl radical (�OH) is very
high (rate constants for many biological molecules
are 108–1010

M
21 s21; Buxton et al., 1988). The half-life

of �OH may therefore be in the nanosecond range in
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cells. Therefore, it is not possible for �OH to migrate in
solution; instead, �OH will react with itself, other ROS,
or with proteins, lipids, and other biomolecules in close
proximity to �OH production. Thus, �OH can play a role
as a localized reaction intermediate, but it generally
cannot transduce a signal to a more distant target
molecule.

ROS REGULATION OF HYPERPOLARIZATION-
DEPENDENT PLASMA MEMBRANE
Ca21-PERMEABLE CATION CHANNELS

ROS induce cytosolic Ca21 increases in guard cells
and stomatal closure in Commelina and Arabidopsis
(McAinsh et al., 1996; Pei et al., 2000). ROS activation of
a hyperpolarization-dependent Ca21-permeable cation
(ICa) channel was identified in the plasma membrane of
Arabidopsis guard cells (Pei et al., 2000). ROS levels in
guard cells increase in response to ABA application (Pei
et al., 2000; Zhang et al., 2001). ROS activation of ICa
channels is impaired in the recessive ABA insensitive
gca2 mutant (Pei et al., 2000) and also in the dominant
ABA insensitive abi2-1 protein phosphatase mutant
(Allen et al., 1999; Murata et al., 2001), thus providing
molecular genetic evidence for the relevance of ICa
channel activation in ABA signal transduction.

Biochemical studies showed that recombinant ABI1
and ABI2 protein phosphatase 2C (PP2C) activities are
inhibited by H2O2, which indicates that these PP2Cs
may represent direct targets of ROS in ABA signaling
(Meinhard and Grill, 2001; Meinhard et al., 2002). ROS
inhibition of the ABI1 and ABI2 PP2Cs is consistent
with the model that ABI1 and ABI2 function as negative
regulators of ABA signal transduction (Sheen, 1998;
Merlot et al., 2001). ABA inhibition of negatively reg-
ulating PP2Cs could contribute to turning up the ABA
signaling pathway. Whether ROS also directly modify
the ICa channel proteins and/or additional intermedi-
ate regulatory proteins remains to be determined.

ROS ACTIVATION OF CALCIUM CHANNELS: A
BROADLY USED SIGNALING CASSETTE

Recent reports have identified and characterized
a class of hyperpolarization-activated Ca21-permeable
cation channels in several types of plant cells, includ-

ing tomato (Lycopersicon esculentum) suspension cul-
ture cells (Gelli and Blumwald, 1997), guard cells
(Hamilton et al., 2000; Pei et al., 2000), root hair cells
(Véry and Davies, 2000), root elongation zone epider-
mal cells (Kiegle et al., 2000; Demidchik et al., 2002a,
2003; Foreman et al., 2003), and algal rhizoid cells
(Coelho et al., 2002). In tomato suspension culture
cells, fungal elicitor activation of ICa-type Ca21 chan-
nels (Gelli et al., 1997) is inhibited by the antioxidant,
dithiothreitol (A. Gelli and E. Blumwald, personal
communication), indicating a possible role for ROS in
channel activation.

Elicitors evoke both cytosolic Ca21 increases and
ROS generation; however, the peptide elicitor harpin
induces only ROS generation (Chandra and Low,
1997). In some cases, Ca21 elevations have been
reported upstream of ROS production; in other cases,
Ca21 elevations occur downstream of ROS production
(Bowler and Fluhr, 2000), indicating complex spatio-
temporal Ca21 elevation mechanisms. In tobacco
(Nicotiana plumbagifolia) seedlings, oxidative stress
stimulates cytosolic Ca21 increases (Price et al., 1994).
A recent study showed that the allelopathic toxin (2)-
catechin causes rapid ROS production, followed by
ROS-induced Ca21 increases in Centaurea diffusa and
Arabidopsis roots, suggesting a broader role for ROS-
Ca21 signaling in pathogenic responses (Bais et al.,
2003).

But which enzymes of the many ROS producing
and scavenging proteins (Mittler, 2002) cause signal-
induced ROS production? In mammalian systems,
growth factors such as epidermal growth factor and
platelet-derived growth factor stimulate ROS genera-
tion (Sundaresan et al., 1995; Bae et al., 1997). Reactive
oxygen species reversibly inhibit protein Tyr phos-
phatase activity by oxidizing a Cys residue in the
catalytic site (Lee et al., 1998; Rhee et al., 2000; Salmeen
et al., 2003; van Montfort et al., 2003). ROS inhibition of
these negatively regulating phosphatases enhances
stimulation of Tyr phosphorylation by the epidermal
growth factor and platelet-derived growth factor re-
ceptor Tyr kinases (Salmeen et al., 2003; van Montfort
et al., 2003). However, in mammalian cells the ROS-
producing enzymes that mediate growth factor-
induced ROS production remain unknown. In plant
cells, 10 different possible mechanisms of ROS pro-
duction are known (Mittler, 2002), including mitochon-

Figure 1. Metabolic pathways of reactive oxygen
species in plants. Some of the important enzymes
in reactive oxygen species metabolic pathways
are illustrated. APX, ascorbate peroxidase; GSH,
glutathione; SOD, superoxide dismutase.
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drial and chloroplast electron transfer, membrane
bound NAD(P)H oxidases, and cytosolic xanthine
oxidase (Fig. 1).

NAD(P)H OXIDASES AS MEDIATORS OF ROS-ICa

SIGNALING IN ROOT HAIR POLAR GROWTH
AND GUARD CELLS

In Fucus rhizoid cells, there is a local oxidative burst
at the growing rhizoid tip (Coelho et al., 2002).
Furthermore, ROS activation of rhizoid apex Ca21

channels and a tip-focused Ca21 gradient after hyper-
osmotic treatment were demonstrated (Coelho et al.,
2002). The pharmacological NAD(P)H oxidase
inhibitor, diphenylene iodinium (DPI), inhibited tip
growth in Fucus and the tip-localized Ca21 gradient.
DPI also partially inhibits ABA-induced stomatal
closing (Pei et al., 2000).

Recently, direct genetic evidence was obtained for
a function of membrane bound NAD(P)H oxidases in
root hair growth and ABA-ROS signal transduction in
guard cells. Hyperpolarization-activated Ca21 chan-
nels are activated by the hydroxyl radical (�OH) in
epidermal cells of the Arabidopsis root elongation
zone (Foreman et al., 2003). Loss-of-function muta-
tions in the NAD(P)H oxidase gene, atrbohC (also
named rhd2, for root hair defective2), caused a short
root hair phenotype (Foreman et al., 2003). Polar
growth is associated with tip-localized Ca21 influx
and cytosolic Ca21 elevations (Malho and Trewavas,
1996; Pierson et al., 1996; Holdaway-Clarke et al., 1997;
Messerli et al., 2000; Plieth and Trewavas, 2002). In-
terestingly, the root hair tip-focused Ca21 gradient and
root hair bulge-localized ROS elevations were im-
paired in atrbohC. Exogenous application of �OH to
roots in the atrbohC mutant induced spherical (non-
polar) root hair bulges (Foreman et al., 2003). In
contrast in a different study, Arabidopsis root hair
growth rate was attenuated with the application of
H2O2, which induced [Ca21]cyt elevation (Jones et al.,
1998). This apparent difference in ROS responses may
be explained by the different developmental stages of
root hairs and/or the lack of tip-focused ROS pro-
duction when exogenous ROS are applied. The char-
acterization of the atrbohC mutant demonstrates a role
for ROS in mediating root hair growth.

Direct evidence was lacking that ROS function as
rate-limiting second messengers during guard cell
ABA signal transduction. Two catalytic subunit genes
encoding NAD(P)H oxidases, AtrbohD and AtrbohF,
were found to be highly expressed in guard cells, and
both mRNAs are elevated in response to ABA (Kwak
et al., 2003). Double knockout of the partially redun-
dant NAD(P)H oxidases showed ABA insensitivity of
stomatal closing and impairment in both ABA induc-
tion of ROS accumulation and ABA activation of ICa
channels (Kwak et al., 2003). NAD(P)H oxidases pro-
duce �O2

2, which readily forms H2O2 (Fig. 1). Exoge-
nous H2O2 application restored ICa channel activation

and partial stomatal closing in the atrbohD atrbohF
double mutant. These findings identify NAD(P)H
oxidases as important mediators of ABA-induced
ROS production and ABA activation of ICa channels.
Consistent with this hypothesis, in guard cells,
elicitors that cause ROS production and stomatal
closing (Lee et al., 1999) activate ICa channels in a
cytosolic NAD(P)H-dependent manner (Klüsener
et al., 2002).

Importantly, the linkages of NAD(P)H oxidases to
ROS production and ROS activation of Ca21 channels
in Arabidopsis roots (Foreman et al., 2003), in Fucus
rhizoids (Coelho et al., 2002), and in guard cells (Pei
et al., 2000; Kwak et al., 2003) indicate that the ROS-ICa
channel pathway may represent a more widely used
signaling cassette (McAinsh and Hetherington, 1998)
in plant biology.

In addition to NAD(P)H oxidases, other classes of
ROS producing and scavenging enzymes (Mittler,
2002) are likely to contribute to ROS regulation of ICa
channels during signal transduction and develop-
ment. Furthermore, ion channels often function as
signaling nodes upon which parallel signal transduc-
tion pathways converge (Hille, 1992; Assman and
Shimazaki, 1999; Schroeder et al., 2001; Sanders et al.,
2002). Therefore, it is likely that ICa channels are
regulated by additional parallel mechanisms. In Ara-
bidopsis mesophyll cells, blue light activates an
ICa-like Ca21 current (Stoelzle et al., 2003). Blue light
activation of ICa-like Ca21 channels was proposed not
to require ROS production based on lack of an in-
hibitory effect of the pharmacological NAD(P)H oxi-
dase inhibitor DPI (Stoelzle et al., 2003). Moreover,
a second type of ICa-like Ca21 current exists in root
hairs, which was reported not to be ROS regulated
(Véry and Davies, 2000; Demidchik et al., 2003). Pro-
tein kinase and phosphatase inhibitors have been
shown to modulate ICa channels in Vicia faba guard
cells (Köhler and Blatt, 2002). Future research will
show whether phosphorylation events and other pos-
sible ICa channel regulators function parallel to ROS
production or sequentially in the same signaling
branch.

CAN MECHANOSENSING CHANNELS BE
STIMULATED VIA ROS PRODUCTION?

Mechanosensing in plants remains an elusive field.
Stretch-activated channels have been proposed to
function as general mechanosensors in signal trans-
duction (Falke et al., 1988). However, relatively few
studies of stretch-activated channels in plants have
been reported (e.g. Falke et al., 1988; Cosgrove and
Hedrich, 1991; Ding and Pickard, 1993a, 1993b), and
the molecular mechanisms underlying stretch activa-
tion of channels in plants remain largely unknown.
While several channel types in plants are indeed
modulated by membrane stretch, which can contri-
bute to mechanosensing, no genetic evidence for their
functions in mechanosensing has yet been obtained.
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As reviewed above, recent studies in Fucus rhizoids
and Arabidopsis root hairs revealed that polar growth
is associated with tip-localized ROS elevation and is
correlated with ROS activation of Ca21-permeable
channels (Coelho et al., 2002; Foreman et al., 2003).
Hyperosmotic stress of Fucus rhizoids also leads to
ROS production and tip-focused cytosolic Ca21 eleva-
tion (Coelho et al., 2002).

The tip-focused Ca21 influx during polar growth has
long been hypothesized to be mediated by stretch-
activated nonselective cation channels (for reviews and
references, see Boonsirichai et al., 2002; Demidchik
et al., 2002b; Robinson and Messerli, 2002; Perbal and
Driss-Ecole, 2003). Alternatively, polar tip growth and
tropic responses may be mediated by developmental
pathways and/or local mechanical stresses, which in
turn cause ROS production and oxidative bursts. Such
oxidative bursts could then activate plasma membrane
ICa channels. This working hypothesis would suggest
focusing early mechanosensing analyses on mecha-
nisms that modulate ROS-producing enzymes, in
order to elucidate upstream mechanosensors and
ROS producer activation mechanisms. Note that this
hypothesis does not necessarily exclude possible par-
allel direct mechanical activation of stretch-activated
channels.

Interestingly, recent research in vascular smooth
muscle has suggested that mechanical stretch induces
ROS production by activation of NAD(P)H oxidases
(Grote et al., 2003). But how could mechanostimula-
tion be translated into regulation of ROS generat-
ing enzymes? Conceivably, mechanostimulation may
modulate ROS producing enzymes via interaction
with the cytoskeletal network and/or cell walls.
Stretch-activated channels have been hypothesized to
be activated by tension via actin filaments that are de-
formed by statoliths during root gravisensing (Perbal
and Driss-Ecole, 2003). Polar growth of Arabidopsis
root hairs is perturbed by actin-depolymerizing and
microtubule depolymerizing drugs (for review, see
Hepler et al., 2001; Ketelaar et al., 2003). Mutations in
the actin-related proteins 2 and 3, which are the major
subunits of the Arp2/3 complex, result in cell shape
defects, for example during leaf epidermal cell de-
velopment, root hair growth, and trichome develop-
ment (Frank and Smith, 2002; Li et al., 2003; Mathur
et al., 2003; Van Gestel et al., 2003). However, whether
ROS producing enzyme activities are modulated by
cytoskeletal networks remains to be examined during
polar growth or mechanical stimulation.

LOCALIZED REGULATION OF ROS PRODUCTION
AND NAD(P)H OXIDASES

As discussed above, recent genetic studies have
linked NAD(P)H oxidase genes to polar growth and
ABA-ICa channel signaling (Foreman et al., 2003; Kwak
et al., 2003). In mammalian cells, NAD(P)H oxidases
are composed of the plasma membrane catalytic

subunits gp91phox (homologs of Atrboh) and p22phox

proteins, which form a heterodimeric flavocytochrome
(Diebold and Bokoch, 2001). During activation in
phagocytes, two cytosolic proteins, p47 and p67, and
the small G protein Rac translocate to the plasma
membrane, resulting in formation of the active
NAD(P)H oxidase complex (Diekmann et al., 1994;
Diebold and Bokoch, 2001). Interestingly, no homologs
of the mammalian p47 and p67 NADPH oxidase sub-
units are found in the Arabidopsis genome (Torres et al.,
2002), suggesting that elucidation of unique regulation
mechanisms of plant NAD(P)H oxidases is needed.

In guard cells, the ABA-insensitive abi1-1 PP2C and
ost1 protein kinase mutants and phosphatidylinosi-
tol3-kinase inhibitors all impair ABA-induced ROS
production, indicating that these protein phosphory-
lation-related enzymes and phosphatidylinositol3-
phosphate may directly or indirectly regulate ROS
production proteins (Murata et al., 2001; Mustilli et al.,
2002; Park et al., 2003).

A previous study suggested that activation of the
small G proteins, AtROP2 and AtROP1 (also named
AtRac11), is required for polar growth of Arabidopsis
root hairs (Jones et al., 2002) and pollen tubes (Li et al.,
1999). Furthermore, AtROP1, AtROP2, and NtROP1
regulate actin bundle formation in growing tips of
Arabidopsis and tobacco (Fu et al., 2001, Jones et al.,
2002; Chen et al., 2003). Raising the extracellular Ca21

concentration rescues pollen tube growth inhibition in
antisense atrop1 and dominant negative atrop1 plants
(Li et al., 1999). These results support the hypothesis of
a relationship between AtROP/Rac small G proteins,
the cytoskeletal network, and regulation of tip-local-
ized Ca21 influx in polar growth.

Some plant NAD(P)H oxidases are targeted to the
plasma membrane (Keller et al., 1998; Sagi and Fluhr,
2001). Therefore, it is conceivable that signal trans-
duction mechanisms may activate NAD(P)H oxidases
causing local ROS production and subsequent local
activation of Ca21-permeable channels in plant mem-
branes. Note that in V. faba guard cells, exogenous
H2O2 inhibits outward K1 channels (Köhler et al.,
2003), which would inhibit ABA-induced stomatal
closing. This finding and the function of NAD(P)H
oxidases in ABA-induced stomatal closing (Kwak
et al., 2003) together indicate that a localized oxidative
burst may occur in response to ABA, similar to
observations at the Fucus rhizoid tip (Coelho et al.,
2002). Further research is needed to determine by
which mechanisms NAD(P)H oxidases and ion chan-
nels are biochemically linked to ensure specificity in
ROS regulation and localized ROS production (see
Kwak et al., 2003).

CONCLUSIONS

Recent findings have shown that many stimuli cause
ROS production in plant cells and that ROS acti-
vate plasma membrane ICa channels and cytosolic

Reactive Oxygen Species Activation of Ca21 Channels

Plant Physiol. Vol. 135, 2004 705



Ca21 elevations in several plant cell types. Moreover,
membrane-bound NAD(P)H oxidases function in root
hair growth and in guard cell ABA activation of ICa
channels, providing direct genetic evidence that ROS
generation is rate-limiting for Ca21 signaling during
these responses. We extrapolate from these findings
and propose a testable working hypothesis that ROS
production may also contribute to mechanotransduc-
tion in plants. Further analyses of the ROS-ICa channel
signaling cassette may bring new surprises and shed
light into long-standing questions in plant physiology.

Note Added in Proof

Two recent publications provide further data show-
ing links between ROS production and stomatal clos-
ing. Chen and Gallie (2004) showed a relationship
between ascorbic acid levels, guard cell redox state,
and stomatal aperture. Suhita et al. (2004) reported
that methyl jasmonate treatment caused ROS produc-
tion in guard cells and stomatal closing. These respon-
ses were impaired in the atrbohD/atrbohF and the
methyl jasmonate-insensitive jar1 mutants (Suhita et
al., 2004).
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